Inertial frame rotation induced by rotating gravitational waves

نویسندگان

  • Donald Lynden-Bell
  • Joseph Katz
چکیده

We calculate the rotation of the inertial frame within an almost flat cylindrical region surrounded by a pulse of non-axially-symmetric gravitational waves that rotate about the axis of our cylindrical polar coordinates. Our spacetime has only one Killing vector. It is along the z-axis and hypersurface orthogonal. We solve the Einstein equations to first order in the wave amplitude and superpose such linearized solutions to form a wave pulse. We then solve the relevant Einstein equation to second order in the amplitude to find the rotation of inertial frames produced by the pulse. The rotation is without time delay. The influence of gravitational wave angular momentum on the inertial frame demonstrates that Mach’s principle can not be expressed in terms of the influence of the stressenergy-momentum tensor alone but must involve also influences of gravitational wave energy and angular momentum. PACS numbers 04.20.Jb 04.30. -w ∗email: [email protected] †email:[email protected] ‡email:[email protected] 1 ar X iv :0 80 7. 30 77 v2 [ gr -q c] 1 3 A ug 2 00 8

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 4 A note : graviton spin , gravitomagnetic fields and self - interaction of non - inertial frame of reference ∗

Three weak gravitational effects associated with the gravitomagnetic fields are taken into account in this paper: (i) we discuss the background Lorentz transformation and gauge transformation in a linearized gravity theory, and obtain the expression for the spin of gravitational field by using the canonical procedure and Noether theorem; (ii) we point out that by using the coordinate transforma...

متن کامل

A Note: Graviton Spin, Gravitomagnetic Fields and Self-interaction of Non-inertial Frame of Reference *

Three weak gravitational effects associated with the gravitomagnetic fields are taken into account in this paper: (i) we discuss the background Lorentz transformation and gauge transformation in a linearized gravity theory, and obtain the expression for the spin of gravitational field by using the canonical procedure and Noether theorem; (ii) we point out that by using the coordinate transforma...

متن کامل

ar X iv : a st ro - p h / 98 05 07 1 v 1 6 M ay 1 99 8 Instantaneous Inertial Frame but Retarded Electromagnetism in Rotating Relativistic Collapse

Slowly rotating collapsing spherical shells have flat spaces inside and the inertial frames there rotate at ω s (t) relative to infinity. As first shown by Lindblom & Brill the inertial axes within the shell rotate rigidly without time delays from one point to another. Although the rotation rate of the inertial axes is changing the axes are inertial so, relative to them, there is neither an ˙ ω...

متن کامل

Electromagnetic Waves in a Rotating Frame of Reference

We discuss the electromagnetic measurements of rotating observers and study the propagation of electromagnetic waves in a uniformly rotating frame of reference. The phenomenon of helicity-rotation coupling is elucidated and some of the observational consequences of the coupling of the spin of a particle with the rotation of a gravitational source are briefly examined.

متن کامل

Gravitational Faraday rotation in a weak gravitational field

Abstract We examine the rotation of the plane of polarization for linearly polarized light rays by the weak gravitational field of an isolated physical system. Based on the rotation of inertial frames, we review the general integral expression for the net rotation. We apply this formula, analogue to the usual electromagnetic Faraday effect, to some interesting astrophysical systems: uniformly s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008